Econometrics

Topics on Functional Form, Wooldridge (2013), Chapter 6 (section 6.2) and Chapter 9 (section 9.1)

- Functional Form - The meaning of the term linear
- Quadratic Models
- Interaction Terms
- Tests of functional form
- Ramsey's RESET Test
- Nonnested Tests

A function $f\left(z_{1}, \ldots, z_{J}\right)$ is linear in z_{1}, \ldots, z_{J} if it can be written in the following form

$$
f\left(z_{1}, \ldots, z_{J}\right)=m_{1} z_{1}+m_{2} z_{2}+\ldots+m_{J} z_{J}+b
$$

for some constants b and $m_{1}, \ldots m_{J}$.
That is, a function is linear if it can be written as a weighted sum of the arguments plus a constant.

Topics on Functional Form

Linearity in the Variables

The meaning of linearity in the variables is that the conditional expectation of y is a linear function of x, that is the regression curve in this case is a straight line. Examples:

$$
E(y \mid x)=\beta_{0}+\beta_{1} x .
$$

is linear in variables,but

$$
E(y \mid x)=\beta_{0}+\beta_{1} x^{2} .
$$

is not a linear function of x.

Topics on Functional Form

Further examples
1-

$$
E\left(y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} .
$$

This function is linear in variables.
2-

$$
E\left(y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2} .
$$

This function is non-linear in variables.

Topics on Functional Form

Linearity in the Parameters

The second interpretation of linearity is that the conditional expectation of $y, E(y \mid x)$, is a linear function of the parameters, the β^{\prime} 's; it may or may not be linear in the variable x. Examples:
(1)

$$
E(y \mid x)=\beta_{0}+\beta_{1} x^{2}
$$

is a linear (in the parameters) regression model as it is a straight line (where the arguments now are β_{0} and β_{1}).
(2)

$$
E\left(y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}
$$

is a linear in the parameters

Topics on Functional Form

Functional Form - The meaning of the term linear
All the models shown in the figure below are linear regression models, that is, they are models linear in the parameters.

Multiple Regression Analysis: Further Issues

Now consider the model:

$$
E(y \mid x)=\beta_{0}+\beta_{1}^{2} x .
$$

- The preceding model is an example of a nonlinear (in the parameter) regression model.Why? Because it is a quadratic function in the parameters.
- The parameters of such model cannot be estimated using the ordinary least squares estimator.
- We have to use the non-linear least squares estimator

$$
S^{*}\left(b_{0}, b_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1}^{2} x_{i}\right)^{2}
$$

Topics on Functional Form

Functional Form - The meaning of the term linear
The term "linear" regression refers to a regression that is linear in the parameters; the β^{\prime} 's (that is, the parameters are raised to the first power only).

LINEAR REGRESSION MODELS

Model linear in parameters?

Model linear in variables?

Yes

LRM NLRM

Note: \quad LRM $=$ linear regression model
NLRM $=$ nonlinear regression model

Topics on Functional Form

- The ordinary least squares estimator can be used to study relationships that are not strictly linear in x and y by using nonlinear functions of x and y.
- An example considered before was the case that the dependent variable and/or regressors were in natural logs.
- Other popular nonlinear functions considered in empirical work are:
- Quadratic forms of the regressors
- Forms that include interactions of the regressors (cross-products).

Quadratic Models

For a model of the form

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+u
$$

we can't interpret β_{1} alone as measuring the change in y with respect to x, we need to take into account β_{2}.
The estimated regression equation is

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x+\hat{\beta}_{2} x^{2}
$$

Therefore

$$
\frac{\partial \hat{y}}{\partial x}=\hat{\beta}_{1}+2 \hat{\beta}_{2} x .
$$

Hence if x increases by $1, \hat{y}$ increases by $\hat{\beta}_{1}+2 \hat{\beta}_{2} x$.

Quadratic Models

Example: We would like to study how wages are related with years of experience.
We have information on wages and experience for 526 people from the 1976 Current Population Survey (USA).
Running the regression of wages on experience and experience squared we obtain

$$
\begin{aligned}
\widehat{\text { wage }} & =\underset{(0.35)}{3.73}+\underset{(0.041)}{0.298} \text { exper }-\underset{(0.0009)}{0.0061} \text { exper }^{2} \\
R^{2} & =0.093
\end{aligned}
$$

where the values in parentheses are the estimated standard errors. In this model

$$
\frac{\partial \widehat{\text { wage }}}{\partial \text { exper }}=0.298-2(0.0061) \text { exper }
$$

Quadratic Models

Example:

Experience has a diminishing effect on wage:

exper	1	10	24.4	28
Dwage Dexper	0.286	0.176	0.000	-0.047

Quadratic Models

Example:

- Does this mean the return to experience becomes negative after 24.4 years?
- Not necessarily. It depends on how many observations in the sample lie right of the turnaround point
- In the given example , these are about 28% of the observations . There may be a specification problem.

Quadratic Models

Example: (Effects of pollution on housing prices) Consider the model

$$
\begin{aligned}
\log (\text { price })= & \beta_{0}+\beta_{1} \log (\text { nox })+\beta_{3} \log (\text { dist })+\beta_{4} \text { rooms } \\
& +\beta_{5} \text { rooms }^{2}+\beta_{6} \text { stratio }+u
\end{aligned}
$$

where

- price=median housing price of a community.
- nox=Nitrogen oxide air.
- dist=distance from from employment centres.
- rooms=average number of rooms
- stratio=student/teacher ratio.
- $n=506$ communities in the Boston area

Quadratic Models

Estimating the model we obtain

$$
\begin{aligned}
\widehat{\log (\text { price })}= & \underset{(0.57)}{13.39}-\underset{(0.115)}{0.902} \log (\text { nox })-\underset{(0.043)}{0.087} \log (\text { dist })-\underset{(0.165)}{0.545 \text { rooms }} \\
& +\underset{(0.013)}{0.062 \text { rooms }^{2}-\underset{(0.006)}{0.048 \text { stratio, }}} \\
R^{2}= & 0.603
\end{aligned}
$$

Hence

$$
\frac{\partial \mathrm{log}(\widehat{\text { price })}}{\partial \text { rooms }}=-0.545+2 \times 0.062 \text { rooms }
$$

Quadratic Models

Turnaround point rooms ${ }^{*}=\frac{0.545}{2 \times 0.062}=4.4$.

Quadratic Models

Example:

- $\frac{\partial \log (\widehat{\text { price })}}{\partial \text { rooms }}=-0.545+2 \times 0.062 \times 2=-0.297$ if rooms $=2 \rightarrow$ This is an odd result.
- Only 1% of the sample have houses averaging 4.4 rooms or less \rightarrow We can ignore observations with rooms ≤ 4.4
- $\frac{\partial \mathrm{log}(\hat{\text { price })}}{\text { drooms }}=-0.545+2 \times 0.062 \times 5=0.075(7.5 \%)$ if rooms $=5$
- $\frac{\partial \log \widehat{\text { price })}}{\partial \text { rooms }}=-0.545+2 \times 0.062 \times 6=0.199(19.9 \%)$ if rooms $=6$

Remark: We can consider higher order polynomials

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+u
$$

Interaction Terms

Sometimes we may want to allow the marginal effect of a regressor to vary with the level os some other regressor. In this case, the model of the form

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+u
$$

We can't interpret β_{1} alone as measuring the change in y with respect to x_{1}, we need to take into account β_{3} as well.
The estimated equation is

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\hat{\beta}_{3} x_{1} x_{2}
$$

Therefore

$$
\frac{\partial \hat{y}}{\partial x_{1}}=\hat{\beta}_{1}+\hat{\beta}_{3} x_{2}
$$

Hence the interpretation is difficult. We have to evaluate it at particular values of x_{2}. For example, at the sample mean of \bar{x}_{2}.

- Original model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+u
$$

- New model

$$
y=\delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\beta_{3}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+u
$$

- μ_{1} and μ_{2} are population means. In practice they are replaced by sample means \bar{x}_{1} and \bar{x}_{2}.
- We can show that $\delta_{1}=\beta_{1}+\beta_{3} \mu_{2}$

Interaction Terms

Reparametrization of interaction effects

- Notice that

$$
\begin{aligned}
y= & \delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\beta_{3}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+u \\
= & \delta_{0}+\delta_{1} x_{1}+\delta_{2} x_{2}+\beta_{3} x_{1} x_{2}-\beta_{3} x_{1} \mu_{2}-\beta_{3} \mu_{1} x_{2} \\
& +\beta_{3} \mu_{1} \mu_{2}+u \\
= & \underbrace{\delta_{0}+\beta_{3} \mu_{1} \mu_{2}}_{\beta_{0}}+\underbrace{\left(\delta_{1}-\beta_{3} \mu_{2}\right)}_{\beta_{1}} x_{1}+\underbrace{\left(\delta_{2}-\beta_{3} \mu_{1}\right)}_{\beta_{2}} x_{2}+\beta_{3} x_{1} x_{2}+u
\end{aligned}
$$

- Therefore

$$
\begin{aligned}
\beta_{1} & =\delta_{1}-\beta_{3} \mu_{2} \\
\delta_{1} & =\beta_{1}+\beta_{3} \mu_{2}
\end{aligned}
$$

- Its estimate is $\bar{\delta}_{1}=\hat{\beta}_{1}+\hat{\beta}_{3} \bar{x}_{2}$
- Advantages of reparametrization
- Easy interpretation of all parameters
- Standard errors for partial effects at the mean values available
- If necessary, interaction may be centered at other interesting values

Example

$$
\begin{aligned}
\log (\text { price })= & \beta_{0}+\beta_{1} \text { bdrms }+\beta_{3} \text { lotsize }+\beta_{4} \text { sqrft } \\
& +\beta_{5} \text { sqrft } \times \text { bdrms }+u
\end{aligned}
$$

where
price $=$ house price, $\$ 1000$ s
bdrms $=$ number of bedrooms
lotsize $=$ size of lot in square feet
sqrft = size of house in square feet
Sample: 88 observations collected from the real estate pages of the Boston Globe during 1990. These are homes that sold in the Boston, MA area.

Dependent variable \log (price) $n=88$

	Estimate	Std. Err.	t-Ratio
Intercept	5.0151932	0.2852878	17.5794155
bdrms	-0.0397661	0.0742173	-0.5358054
lotsize	0.0000055	0.0000020	2.6934041
sqrft	0.0002425	0.0001348	1.7986795
sqrft \times bdrms	0.0000298	0.0000314	0.9492329

$$
R^{2}=0.626333874
$$

Dependent variable \log (price)
$n=88$

	Estimate	Std. Err.	t-Ratio
Intercept	4.8008736	0.1032982	46.4758498
bdrms	0.0202980	0.0290793	0.6980240
lotsize	0.0000055	0.0000020	2.6934041
sqrft	0.0003489	0.0000450	7.7595579
$($ sqrft $-\overline{\text { sqrft }}) \times($ bdrms $-\overline{\text { bdrms }})$	0.0000298	0.0000314	0.9492329
$R^{2}=0.626333874$			

$\overline{s q r f t}$-sample average of sqrft
$\overline{b d r m s}$-sample average of bdrms

Test of functional form

Functional Form

$$
y=\beta_{0}+\sum_{i=1}^{k} \beta_{i} x_{i}+u .
$$

We've seen that a linear regression can really fit nonlinear relationships

- Can use logs on right hand side, left hand side or both.
- Can use quadratic forms of x^{\prime} s.
- Can use interactions of x^{\prime} s.
- How do we know if we've got the right functional form for our model?

Test of functional form

- First, use economic theory to guide you.
- Think about the interpretation.
- Does it make more sense for x to affect y in percentage (use logs)?
- Does it make more sense for the derivative of y with respect to x_{1} to vary with x_{1} (quadratic) or with x_{2} (interactions) or to be fixed?
- We already know how to test joint exclusion restrictions to see if higher order terms or interactions belong in the model.
- It can be tedious to add and test extra terms, plus may find a square term matters when really using logs would be even better.
- A test of functional form is Ramsey's regression specification error test (RESET)

Test of functional form

The idea of RESET is to include squares and possibly higher order powers of the fitted values in the regression.
We can estimate:

- $y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\delta_{1} \hat{y}^{2}+$ error and test $H_{0}: \delta_{1}=0$ using the t statistic.
- Why should we use \hat{y}^{2} ?
- Because \hat{y}^{2} is a function of the regressors, their squares and the cross-products of the regressors.
- To see this notice that if $k=2$, for instance

$$
\begin{aligned}
\hat{y}_{i}^{2}= & \left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\hat{\beta}_{2} x_{i 2}\right)^{2} \\
= & \hat{\beta}_{0}^{2}+\hat{\beta}_{1}^{2} x_{i 1}^{2}+\hat{\beta}_{2}^{2} x_{i 2}^{2}+2 \hat{\beta}_{0} \hat{\beta}_{1} x_{i 1}+2 \hat{\beta}_{0} \hat{\beta}_{2} x_{i 2} \\
& +2 \hat{\beta}_{1} \hat{\beta}_{2} x_{i 1} x_{i 2}
\end{aligned}
$$

- We can also use the cube of \hat{y} : We estimate

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\delta_{1} \hat{y}^{2}+\delta_{2} \hat{y}^{3}+\text { error }
$$

and test $H_{0}: \delta_{1}=0, \delta_{2}=0$ using the F or $L M$ statistic.

Test of functional form

Example: Housing Price Equation
Consider the following two models for housing prices:
1-price $=\beta_{0}+\beta_{1}$ lotsize $+\beta_{2}$ sqrft $+\beta_{3}$ bdrms $+u$.
$n=88$

- Running the regression of price on lotsize ,sqrft and bdrms we obtain $R^{2}=0.67236$
- Running the regression of price on lotsize, sqrft and bdrms, $\widehat{\text { price }}^{2}$ and $\widehat{\text { price }}^{3}$ we obtain $R^{2}=0.70585$.
$2-\log ($ price $)=\beta_{0}+\beta_{1} \log ($ lotsize $)+\beta_{2} \log ($ sqrft $)+\beta_{3} \log ($ bdrms $)+u$.
- Running the regression of \log (price) on $\log (\operatorname{lotsize}), \log ($ sqrft $)$ and $\log (b d r m s)$ we obtain $R^{2}=0.63937$.
- Running the regression of of $\log ($ price $)$ on \log (lotsize) , $\log (s q r f t)$, $\log ($ bdrms $), \log _{(\text {price })^{2}}^{2}$ and $\widehat{\log (\text { price })^{3}}$ we obtain $R^{2}=0.66248$.
Which is the preferred model?

Test of functional form

Ramsey's RESET

Example: H_{0} : Model 1 is correctly specified vs H_{1} : Model 1 is misspecified

- We need to use the F-statistic:

$$
F=\frac{\left(R_{u r}^{2}-R_{r}^{2}\right) / q}{\left(1-R_{u r}^{2}\right) /(n-k-1)} \sim F(q, n-k-1)
$$

where R_{r}^{2} is the R^{2} of the restricted model and $R_{u r}^{2}$ is the R^{2} of the unrestricted model.

- $R_{u r}^{2}=0.70585$
- $R_{r}^{2}=0.67236$
- $q=2$
- $k=5$
- $n-k-1=88-5-1=82$
- $F^{a c t}=\frac{(0.70585-0.67236) / 2}{(1-0.70585) /(88-5-1)}=4.668$
- $f_{0.05}=3.107$ (based on $F \sim F(2,82)$
- $f_{0.05}=3.1$ (based on $F \sim F(2,90)$ - closest df in the book
- $4.668>3.107$, therefore we reject H_{0} in favour of H_{1} at 5% level.

Test of functional form

Ramsey's RESET

Example: H_{0} : Model 2 is correctly specified vs H_{1} : Model 2 is misspecified

- We need to use the F-statistic:

$$
F=\frac{\left(R_{u r}^{2}-R_{r}^{2}\right) / q}{\left(1-R_{u r}^{2}\right) /(n-k-1)} \sim F(q, n-k-1)
$$

where R_{r}^{2} is the R^{2} of the restricted model and $R_{u r}^{2}$ is the R^{2} of the unrestricted model.

- $R_{u r}^{2}=0.66248$
- $R_{r}^{2}=0.63937$
- $q=2$
- $k=5$
- $n-k-1=88-5-1=82$
- $F^{\text {act }}=\frac{(0.66248-0.63937) / 2}{(1-0.66248) /(88-5-1)}=2.8073$
- $f_{0.05}=3.107$ (based on $F \sim F(2,82)$
- $f_{0.05}=3.1$ (based on $F \sim F(2,90)$ - closest df in the book
- $2.8073<3.107$, therefore we do not reject H_{0} in favour of H_{1} at 5% level.
- Therefore we prefer model 2

Test of functional form

- If the models have the same dependent variables, but nonnested x^{\prime} s could still just make a giant model with the x^{\prime} s from both and test joint exclusion restrictions that lead to one model or the other, approach suggested by Mizon and Richard (1986)
- We have two competing models:

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u \tag{1}
\end{equation*}
$$

against

$$
\begin{equation*}
y=\beta_{0}^{*}+\beta_{1}^{*} f\left(x_{1}\right)+\beta_{2}^{*} f\left(x_{2}\right)+u \tag{2}
\end{equation*}
$$

- Estimate by OLS a comprehensive model

$$
y=\gamma_{0}+\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} f\left(x_{1}\right)+\gamma_{4} f\left(x_{2}\right)+u
$$

- Use F test to test $H_{0}: \gamma_{3}=\gamma_{4}=0$ as a test of model 1 , or
- Use F test to test $H_{0}: \gamma_{1}=\gamma_{2}=0$ as a test of model 2 .

Test of functional form

- The problem with the comprehensive approach: when we have many regressors, the power of the test is low.
- An alternative, the Davidson-MacKinnon (1981) test, uses the fitted values \hat{y} from one model as regressor in the second model and tests for significance.
- In any case, Davidson-MacKinnon test may reject neither or both models rather than clearly preferring one specification.

Test of functional form

Nonnested Tests

Davidson-MacKinnon (1981) test against nonnested alternatives:

- We have two competing models:

$$
\begin{equation*}
y=\beta_{0}+\sum_{i=1}^{k} \beta_{i} x_{i}+u \tag{3}
\end{equation*}
$$

against

$$
\begin{equation*}
y=\beta_{0}^{*}+\sum_{i=1}^{k} \beta_{i}^{*} f\left(x_{i}\right)+u \tag{4}
\end{equation*}
$$

- To test model 3 against model 4 , first estimate model 4 by OLS to obtain the fitted values $\widehat{\hat{y}}$
- Estimate by OLS the model

$$
y=\beta_{0}+\sum_{i=1}^{k} \beta_{i} x_{i}+\theta \widehat{\hat{y}}+u
$$

- The rejection of $H_{0}: \theta=0$ (against a two-sided alternative) leads to the rejection of model 3 .

Test of functional form

Nonnested Tests

Example: Let us consider the a sample taken from the 1976 US Current Population Survey ($n=526$). Consider the models
$1-\log ($ wage $)=\beta_{0}+\beta_{1}$ exper $+u$
$2-\log ($ wage $)=\beta_{0}^{*}+\beta_{1}^{*} \log ($ exper $)+v$
Which is the most appropriate model?

Test of functional form

Example: We run the regression of \log (wage) on exper and compute the fitted values (\hat{y}). Running the regression of \log (wage) on \log (exper) and \hat{y} we obtain

$$
\log (\text { wage })=\underset{(1.27826)}{8.36802}+\underset{(0.04719)}{0.35034} \log (\text { exper })-\underset{(0.84937)}{4.67182 \hat{y}}
$$

Do you reject model 2 in favour of model 1 ?
We run the regression of \log (wage) on \log (exper) and compute the fitted values $(\widehat{\hat{y}})$. Running the regression of \log (wage) on exper and $\widehat{\hat{y}}$ we obtain

$$
\log (\text { wage })=-\underset{(0.59986)}{2.89653}-\underset{(0.0037)}{0.02038 \text { exper }}+\underset{(0.40384)}{2.998} \widehat{\widehat{y}}
$$

Do you reject model 1 in favour of model 2?

Test of functional form

Nonnested Tests

Example:

- We need to use the statistic

$$
t=\frac{\hat{\theta}}{\operatorname{se}(\hat{\theta})} \sim t(n-k-1)
$$

where $\hat{\theta}$ is the OLS estimator of θ and $\operatorname{se}(\hat{\theta})$ is the corresponding standard error.

- H_{0} : Model 2 is correct vs H_{1} : Model 1 is correct
- $t^{a c t}=\frac{-4.67182}{0.84937}=-5.5003$.
- $n-k-1=526-2-1=523$
- $t_{0.025}=1.96$.
- $|-5.5003|=5.5003>1.96$, therefore we reject H_{0} in favour of H_{1} at 5% level.

Test of functional form

Nonnested Tests

Example:

- We need to use the statistic

$$
t=\frac{\hat{\theta}}{\operatorname{se}(\hat{\theta})} \sim t(n-k-1)
$$

where $\hat{\theta}$ is the OLS estimator of θ and $\operatorname{se}(\hat{\theta})$ is the corresponding standard error.

- H_{0} : Model 1 is correct vs H_{1} : Model 2 is correct
- $t^{a c t}=\frac{2.998}{0.40384}=7.4237$
- $n-k-1=526-2-1=523$
- $t_{0.025}=1.96$.
- $|7.4237|=7.4237>1.96$, therefore we reject H_{0} in favour of H_{1} at 5% level.

